
Week 8 - Monday

 What did we talk about last time?
 Finished Master Theorem
 Solved exercises

 An Arab sheikh tells his two sons to race their
camels to a distant city to see who will inherit
his fortune

 The one whose camel is slower wins
 After wandering aimlessly for days, the

brothers ask a wise man for guidance
 Upon receiving the advice, they jump on the

camels and race to the city as fast as they can
 What did the wise man say to them?

 In the interval scheduling problem, some resource (a phone, a
motorcycle, a toilet) can only be used by one person at a time

 People make requests to use the resource for a specific time
interval [s, f]

 The goal is to schedule as many uses as possible
 There's no preference based on who or when the resource is

used

 Interval scheduling can be done with a greedy algorithm
 While there are still requests that are not in the compatible set
 Find the request r that ends earliest
 Add it to the compatible set
 Remove all requests q that overlap with r

 Return the compatible set

 First, we sort the n requests in order of finishing time
 The best comparison-based sort takes O(n log n)

 We scan through the n sorted requests again and make an array S
of length n such that S[i] contains the starting value of i, s(i)
 O(n) time

 Our algorithm selects the first interval in our list sorted on
finishing time. We then move through array S until we find the
first interval j such that s(j) ≥ the finishing time selected. We add
it. We continue the process until we have moved through the
entire array S.
 O(n) time

 Total time: O(n log n)

 Directed graph G = (V, E) with start node s
 Assume that there is a path from s to every other node

(although that's not critical)
 Every edge e has a length le ≥ 0
 For a path P, length of P l(P) is the sum of the lengths of the

edges on P
 We want to find the shortest path from s to every other node

in the graph
 An undirected graph is an easy tweak

 Let's first look at the length of the paths, not the actual paths
 We keep set S of vertices to which we have determined the

true shortest-path distance
 S is the explored part of the graph

 Then, we try to find the shortest new path by traveling from
any node in the explored part S to any node v outside

 We update the distance to v and add v to S
 Then, continue

 Let S be the set of explored nodes
 For each u ∈ S, we store a distance d(u)

 Initially S = {s} and d(s) = 0
 While S ≠ V
 Select a node v ∉ S with at least one edge from S for which d'(v) =

mine=(u,v):u∈S d(u) + le is as small as possible
 Add v to S and define d(v) = d'(v)

A

B

G

E

F

C

D

8

I
H

J
4

2

13

3

4

2

1

3

7

4
17

3

9

2

6

3

 You can think of Breadth-First Search as a pulse expanding, layer
by layer, through a graph from some starting node

 Dijkstra's algorithm is the same, except that the time it takes for
the pulse to arrive is based not on the number of edges, but the
lengths of the edges it has to pass through

 Because Dijkstra's algorithm expands from the starting point to
whatever is closer, it grows like a blob

 There are algorithms that, under certain situations, can cleverly
grow in the direction of the destination and will often take less
time to find the path there

 We have a weighted, connected graph and we want to
remove as many edges as possible such that:
 The graph remains connected
 The edges we keep have the smallest total weight

 This is the minimum spanning tree (MST) problem
 We can imagine pruning down a communication network so

that it's still connected but only with the cheapest amount of
wire total

 MST algorithms are also used as subroutines in other graph
problems

 Assuming positive edge weights, the resulting graph is
obviously a tree
 If the graph wasn't connected, it wouldn't be a solution to our

problem
 If there was a cycle, we could remove an edge, make it cheaper, and

still have connectivity

 Kruskal's algorithm: Add edges to the MST in order of
increasing cost unless it causes a cycle

 Prim's algorithm: Grow outward from a node, always adding
the cheapest edge to a node that is not yet in the MST

 Backwards Kruskal's algorithm: Remove edges from the
original graph in order of decreasing cost unless it disconnects
the graph

 All three algorithms work!

A

L

I

F

B

E

G

C

J

H

K

D

5

3

11

6

5

1

4

3

8

5

12

9

2

7

1
95

4

10

2
4

1

 Imagine you have a set of objects
 Photographs
 Documents
 Microorganisms

 You want to classify them into related groups
 Usually, you have some distance function that says how far

away any two objects are
 You want to group together objects so that all the objects in a

group are close

 The distance function is usually defined between all points
 If the points are in the plane or another Euclidean space, the distance

could simply be the distance between them
 A more flexible way to define distance is as weights on graph edges

in a complete graph
 The distance between a point and itself is 0
 The distance between any two distinct points is greater than 0
 The distance between two points is symmetrical

 What if we want to divide our objects into k non-empty sets:
 C1, C2,…, Ck

 The spacing of this k-clustering is the minimum distance
between any pair of points in different clusters

 We want to find clusters with maximum spacing
 There are other metrics to optimize your clusters on

 We don't want to group together objects that are far apart
 We sort all of the edges by weight and begin adding them

back to our graph in order
 If an edge connects nodes that are already in the same cluster,

we skip it
 Thus, we don't make cycles

 We stop when we have k connected components

 This algorithm is exactly Kruskal's algorithm
 Add edges by increasing size, skipping ones that make a cycle

 We simply stop when we have k connected components
instead of connecting everything
 Alternatively, you can make the MST and delete the k – 1 most

expensive edges

 We want to make an encoding such that the encoding of one
letter is not a prefix of the coding of another letter
 Such an encoding is called a prefix code

 If you have a prefix code, you can scan bits from left to right and
output a letter as soon as it matches

 Example prefix code:
 a→ 11
 b→ 01
 c→ 001
 d→ 10
 e→ 000

 If each letter x has a frequency fx, with n letters total, nfx gives the
number of occurrences of x in a document

 Let code(x) be the encoding of a letter x and S is the alphabet
 Total length of an encoding is:

�
𝑥𝑥∈𝑆𝑆

𝑛𝑛𝑓𝑓𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑛𝑛�
𝑥𝑥∈𝑆𝑆

𝑓𝑓𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥

 An optimal prefix code minimizes average encoding length:

�
𝑥𝑥∈𝑆𝑆

𝑓𝑓𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥

 A key idea is that we can represent letters as leaves in a binary
tree
 Each left turn is a 0
 Each right turn is a 1

 No letter will be the prefix of another
 Why?
 If a letter was the prefix of another, it would be on the path to

the other letter, but every letter is a leaf

e d c b

a

a→ 1
b→ 011
c→ 010
d→ 001
e→ 000

 Recall that a binary tree is a rooted tree in which each node
has 0, 1, or 2 children

 A full binary tree is one in which every node that isn't a leaf
has two children

 We know that the binary tree will be full, but there are many
full binary trees with n leaves

 Imagine that we had a full binary tree T* that was an optimal
prefix tree

 We know that the low frequency letters should appear at the
deepest levels of the tree

 For letters y and z, and corresponding nodes node(y) and
node(z), if depth(node(y)) < depth(node(z)) then fy ≥ fz.

 If we did, we could label it by putting the highest frequency
letters in the highest levels of the tree and then going down,
level by level

 Instead, we work backwards
 The lowest frequency letter must be at the deepest leaf in the

tree, call it v
 Since this is a full binary tree, v must have a sibling w

 Take the two lowest frequency letters y and z.
 Since they are neighbors in a full tree, we can stick them

together and treat them like a meta-letter yz with the sum of
their frequencies.

 Recursively repeat until everything is merged together.

 If S has two letters then
 Encode one with 0 and the other with 1

 Else
 Let y and z be the two lowest-frequency letters
 Form a new alphabet S' by deleting y and z and replacing them with a new

letter w of frequency fy + fz

 Recursively construct a prefix code for S' with tree T'
 Define a prefix code for S as follows:
▪ Start with T'
▪ Take the leaf labeled w and add two children below it labeled y and z

 Divide and conquer algorithms are ones in which we divide a
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute

because recursion is involved

 If there are two elements in the array or fewer then
 Make sure they're in order

 Else
 Divide list into two halves
 Recursively merge sort the two halves
 Merge the two sorted halves together into the final list

 The algorithm is simple, but recursive
 We'll use T(n) to describe the total running time recursively
 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐, 𝑛𝑛 ≤ 2

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, 𝑛𝑛 > 2
 Is it really the same constant c for both?
 No, but it's an inequality, so we just take the bigger one

 Each time, the recursion
cuts the work in half while
doubling the number of
problems
 The total work at each level

is thus always cn
 To go from n to 2, we have

to cut the size in half (log2
n) – 1 times

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn

cn

cn

 Defining a sequence recursively as with Mergesort is called a
recurrence relation

 The initial conditions give the starting point
 Example:
 Initial conditions
▪ T(0) = 1
▪ T(1) = 2

 Recurrence relation
▪ T(k) = T(k-1) + kT(k-2) + 1, for all integers k ≥ 2

 Find T(2), T(3), and T(4)

 We want to be able to turn recurrence relations into explicit
formulas whenever possible

 Often, the simplest way is to find these formulas by iteration
 The technique of iteration relies on writing out many

expansions of the recursive sequence and looking for patterns
 That's it

 Intelligent pattern matching gets you a long way
 However, it is sometimes necessary to substitute in some

known formula to simplify a series of terms
 Recall
 Geometric series: 1 + r + r2 + … + rn = (rn+1 – 1)/(r – 1)
 Arithmetic series: 1 + 2 + 3 + … + n = n(n + 1)/2

 We have seen that recurrence relations of the form 𝑇𝑇 𝑛𝑛 ≤
2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 are bounded by O(n log n)

 What about 𝑇𝑇 𝑛𝑛 ≤ 𝑞𝑞𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛 where q is bigger than 2
(more than two sub-problems)?

 There will still be log2n levels of recursion
 However, there will not be a consistent cn amount of work at

each level

 In general, it's

𝑇𝑇 𝑛𝑛 ≤ �
𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗
𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑛𝑛 �

𝑗𝑗=0

log2 𝑛𝑛−1 𝑞𝑞
2

𝑗𝑗

 This is a geometric series, where 𝑟𝑟 = 𝑞𝑞
2

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1

𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛 − 1
𝑟𝑟 − 1

≤ 𝑐𝑐𝑛𝑛
𝑟𝑟log2 𝑛𝑛

𝑟𝑟 − 1
 Since r – 1 is a constant, we can pull it out

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛𝑟𝑟log2 𝑛𝑛

 For 𝑎𝑎 > 1 and 𝑏𝑏 > 1, 𝑎𝑎log 𝑏𝑏 = 𝑏𝑏log 𝑎𝑎, thus 𝑟𝑟log2 𝑛𝑛 = 𝑛𝑛log2 𝑟𝑟 =
𝑛𝑛log2(𝑞𝑞/2) = 𝑛𝑛(log2 𝑞𝑞)−1

 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛 � 𝑛𝑛(log2 𝑞𝑞)−1 ≤ 𝑐𝑐
𝑟𝑟−1

𝑛𝑛log2 𝑞𝑞 which is
𝑂𝑂 𝑛𝑛log2 𝑞𝑞

 What if we wanted to measure the similarity of one ranking to
another ranking?

 Inversions are pairs of elements that are out of order in one
ranking with respect to the other

 Formally, for indices i < j, there's an inversion if ranking ri > rj

 If two rankings are the same, they would have no inversions
 If two rankings were sorted in opposite directions, they would

have
𝑛𝑛
2 = 𝑛𝑛!

𝑛𝑛−2 !2!
= 𝑛𝑛(𝑛𝑛−1)

2
inversions

 You can visualize inversions as the number of line segments
crossings if you match up items in one list with the other

 A total of 4 inversions

1. American Fiction
2. Barbie
3. Oppenheimer
4. Poor Things

1. Barbie
2. Poor Things
3. Oppenheimer
4. American Fiction

 Of course!
 We can borrow from the Mergesort algorithm
 Divide the problem in half
 Then, we will get the number of inversions in the first half and in

the second half
 Are we done?
 No, we also have to count the inversions between the first half and the

second half
 Those are exactly those elements in the first half that are bigger than

elements from the second half
 We can find those during the merge process

 Maintain a Current pointer into each list, initialized to point to
the front elements

 Set Count = 0
 While both lists have elements
 Let ai and bj be the elements pointed to by the Current pointer
 Append the smaller one to the output list
 If bj is smaller then
▪ Increment Count by the number of elements left in A

 Advance the Current pointer in the list that had the smaller element

 If the list has one element then
 Return 0 inversions and the list L

 Else
 Divide the list into two halves:
▪ A has the first 𝑛𝑛

2
elements

▪ B has the remaining 𝑛𝑛
2

elements

 (inversionsA, A) = Sort-and-Count(A)
 (inversionsB, B) = Sort-and-Count(B)
 (inversions, L) = Merge-and-Count(A, B)
 Return inversions + inversionsA + inversionsB and sorted list L

 Since Merge-and-Count is bounded by O(n), the running time
for Sort-and-Count is clearly:
 𝑇𝑇(1) ≤ 𝑐𝑐

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, for 𝑛𝑛 ≥ 2
 By the same analysis as for Mergesort, T(n) is O(n log n)

 Imagine you have a set of points in a 2D plane
 How do you find the pair of points that's closest?
 This is a fundamental problem in the area of computational

geometry
 As usual, you could look at all pairs of points

 To make things simpler, we assume that no two points have
the same x-coordinate or y-coordinate

 Think about a one-dimensional approach:
 Sort the list by x-value
 The two closest points must be next to each other in the list

 Since the name of the chapter is divide and conquer, that's
what we do

 First, sort all of the points by increasing x-values, calling this
list Px

 Then, sort all of the points by increasing y-values, calling this
list Py

 Find the median point in Px and drop a line through it, dividing
the points into those with smaller x (set Q) and larger x (set R)

 Recursively find the closest pair of points on the left side and
the closest pair of points on the right side

LQ R

 We have magically recursively found the closest pair of points
in Q and the closest pair in R
 Between those two pairs, let's say the closest has distance δ

 But what if the closest pair straddles L, with one point in Q
and the other in R?

 We do a linear scan of Py, the list of points sorted by y values,
making a new y-sorted list of points Sy whose x-coordinate is
within δ of L

 We scan through the list Sy
 For each element, we compute the distance between it and

the next 15 elements
 We find the closest distance
 If the closest distance is smaller than δ, that's the true closest

pair
 Otherwise, we use the smaller of the pairs from Q and R

Q R

δ

δ/2
δ/2

δ

 Pre-processing:
 Sort the points by x: O(n log n)
 Sort the points by y: O(n log n)

 Recursion:
 If there are three or fewer points, find the closest pair by comparing all pairs
 Otherwise, divide into sets Q and R: O(n) time
 Make lists Qx, Qy, Rx, and Ry, giving the points in Q and R sorted by x and y,

respectively: O(n) time
 Construct Sy: O(n) time
 For every point in Sy (of which there can only be n), compute the distance to the

next 15 points: O(n)
 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛

2
+ 𝑐𝑐𝑛𝑛 which is 𝑂𝑂(𝑛𝑛 log 𝑛𝑛)

 We want 𝑥𝑥1𝑦𝑦1 � 2𝑛𝑛 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦1 � 2
𝑛𝑛
2 + 𝑥𝑥0𝑦𝑦0

 What if we compute
 𝑎𝑎 = 𝑥𝑥1 + 𝑥𝑥0 � 𝑦𝑦1 + 𝑦𝑦0

= 𝑥𝑥1𝑦𝑦1 + 𝑥𝑥0𝑦𝑦1 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦0
 𝑏𝑏 = 𝑥𝑥1𝑦𝑦1
 𝑐𝑐 = 𝑥𝑥0𝑦𝑦0

 Then, 𝑏𝑏 � 2𝑛𝑛 + 𝑎𝑎 − 𝑏𝑏 − 𝑐𝑐 � 2
𝑛𝑛
2 + 𝑐𝑐 =

 𝑥𝑥1𝑦𝑦1 � 2𝑛𝑛 + 𝑥𝑥1𝑦𝑦0 + 𝑥𝑥0𝑦𝑦1 � 2
𝑛𝑛
2 + 𝑥𝑥0𝑦𝑦0

 We do two additions before the multiplies: O(n)
 We do three recursive multiplies of n/2-bit numbers
 We do two additions and two subtractions after the

multiplies: O(n)

 𝑇𝑇 𝑛𝑛 ≤ 3𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛
 Which is 𝑂𝑂 𝑛𝑛log2 3 ≈ 𝑂𝑂 𝑛𝑛1.59 , which is better!

1 ,1 where)()(>≥+

= banf

b
n

aTnT

 For recursion that on a problem size n that:
 Makes a recursive calls
 Divides the total work by b for each recursive call
 Does f(n) non-recursive work at each call

 Its running time can be given in the following form, suitable
for use in the Master Theorem:

 If 𝑓𝑓 𝑛𝑛 is O 𝑛𝑛log𝑏𝑏(𝑎𝑎)−𝜖𝜖

for some constant 𝜖𝜖 > 0, then

𝑇𝑇 𝑛𝑛 is Θ 𝑛𝑛log𝑏𝑏(𝑎𝑎)

 If 𝑓𝑓 𝑛𝑛 is Θ 𝑛𝑛log𝑏𝑏(𝑎𝑎) log𝑘𝑘 𝑛𝑛
for some constant 𝑘𝑘 ≥ 0, then

𝑇𝑇 𝑛𝑛 is Θ 𝑛𝑛log𝑏𝑏(𝑎𝑎) log𝑘𝑘+1 𝑛𝑛

 If 𝑓𝑓 𝑛𝑛 is Ω 𝑛𝑛log𝑏𝑏(𝑎𝑎)+𝜖𝜖

for some constant 𝜖𝜖 > 0, and if

𝑎𝑎𝑓𝑓
𝑛𝑛
𝑏𝑏

≤ 𝑐𝑐𝑓𝑓(𝑛𝑛)
for some constant 𝑐𝑐 < 1 and sufficiently large 𝑛𝑛,
then

𝑇𝑇 𝑛𝑛 is Θ 𝑓𝑓(𝑛𝑛)

 Make a Huffman encoding for the following alphabet, given
the frequencies of each letter:
 a 0.04
 b 0.18
 c 0.23
 d 0.21
 e 0.10
 f 0.02
 g 0.21

 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘−1
𝑔𝑔𝑘𝑘−1+2

for all integers k ≥ 1

 𝑔𝑔0 = 1

 Give an explicit formula for this recurrence relation
 Hint: Use the method of iteration

 T(n) = 9T(n/3) + 13n2 log3 n

 Sometimes it helps to think about how I create questions:
 Generate a recurrence relation that fits Case 1
 Generate a recurrence relation that fits Case 2
 Generate a recurrence relation that fits Case 3

 Exam 2!
 Review Chapters 4 and 5 and the Master Theorem

 Finish Homework 4
 Due tonight before midnight!

 Study for Exam 2
 Wednesday in class

	COMP 4500
	Last time
	Questions?
	Logical warmup
	Review
	Interval Scheduling
	Interval scheduling
	Interval scheduling algorithm
	Interval scheduling example
	Running time
	Shortest Paths
	Shortest path set up
	Designing the algorithm
	Dijkstra's Algorithm
	Dijkstra's Algorithm Example
	Reflections on Dijkstra's algorithm
	Minimum Spanning Trees
	Minimum spanning tree
	MST observations
	Approaches
	MST example
	Clustering
	Clustering
	Notes about distance
	Clustering by maximum spacing
	Algorithm
	MST saves the day
	Huffman Codes
	Prefix codes
	Optimal prefix codes
	Algorithm design
	Prefix code tree example
	Full binary trees
	How can we figure out the tree structure?
	We don't have the structure of T*
	Algorithm description
	Algorithm
	Recurrence Relations
	Divide and conquer
	Mergesort algorithm
	Time for mergesort
	Intuition about mergesort recursion
	Recursively defined sequences
	Finding explicit formulas by iteration
	Employing outside formulas
	Further recurrence relations
	Converting to summation
	Final bound
	Counting Inversions
	Ranking similarity
	Minimum and maximum inversions
	Visualization of inversions
	Can we do better than O(n2)?
	Merge-and-Count(A, B)
	Sort-and-Count(L)
	Running time
	Closest Pair of Points
	Closest pair of points
	Designing the algorithm
	Divide
	Divide points
	…and…
	…conquer!
	Divide points
	Running time
	Integer Multiplication
	We need a trick
	Running time
	Master Theorem
	Basic form of the Master Theorem
	Case 1
	Case 2
	Case 3
	Example Problems
	Huffman Codes
	Recursive sequence example
	Sample master theorem problem
	Upcoming
	Next time…
	Reminders

